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NOMENCLATURE 
C,,, specific heat at constant pressure of species i at 

reference temperature; 
H, stagnation enthalpy; 
P, static pressure; 
Ro, universal gas constant; 
r, radial co-ordinate; 
T, static tem~~ture; 
u, a, velocity components; 
W, 
x, 
Yl, 

yz, 
Y3r 

At, 

p, 

Et 

El? 

P9 

molecular weight of mixture; 
streamwise co-ordinate; 
mass fraction of oxygen; 
mass fraction of hydrogen; 
mass fraction of nitrogen; 
static enthalpy of species i at reference tempera- 
ture ; 
compr~ible kinematic eddy viscosity coefficient ; 
incomp~sible kinematic eddy viscosity co- 
efFicient ; 
dynamic viscosity coefficient; 
density. 

Subscripts 
‘i, centerline ; 
I, * jet; 
S, stagnation conditions; 
e, external stream; 
r, turbulent. 

INTRODUCTION 
ALTHOUGH our knowledge of the actual transport 
mechanism of turbulent mixing processes is still rather 
limited, recent experimental and theoretical work has 
provided more insight into the problem and helped 
clarify several points which were open to question until 
now. For example, it could be shown that Prandtl’s 
expression for the incompressible turbulent kinematic 
viscosity coefficient i is incorrect for a jet exhausting into 
a stream with uniform velocity [i]. A comparison of 
theoretical predictions with experimental data [l] 
indicated errors of more than 100 per cent when the 
aforementioned relation for Z was used. However, good 
agreement between theory and experiments was obtained 
when z was taken proportional to the product of the half 

boundary and the centerline velocity uE instead of the 
velocity difference Aummex as introduced by Prandtl. 

Reference 2 suggested a modification of Rrandtl’s 
expression for com&ssible flows. Instead of relating the 
kinematic viscosity coefficient c to the velocity difference, 
it was proposed to relate the dynamic coefficient it = pi 
to the maximum mass flux difference. This model Gelds 
good results for jets exhausting into a quiescent aimos- 
phere, however, it fails for jets exhausting into a stream 
with uniform velocity. Similarly as for incompressible 
jets, theory and experiments agree quite favorably when 
the mass flux difference is replaced by the mass flux at the 
centerline [l]. The formulation of [2] is discussed in detail 
in [3] and [4]. In [4] it was shown that for a jet exhausting 
into a quiescent atmosphere the same result can be 
obtained by linearizing the momentum equation. 

An expression which relates the incompressible and the 
compressible kinematic viscosity coefficient directly has 
already been given by Ting and Libby in 1960 [S]. The 
expression they proposed includes the radial variation of 
z caused by the density gradients in the mixing region. A 
comparison to other formulations or experimental data 
has not yet been made. 

It is the purpose of the present analysis to compare the 
aforementioned transformation with relations developed 
in [l]. In that reference the streamwise momentum equa- 
tion is solved for e such that if all flow quantities appear- 
ing in the expression for E are determined elementally 
E and it can be calculated. Data so obtained may serve 
to confirm the validity of already existing formulations 
for turbulent transport coefficients. 

ANALYSIS 
In [S] Tin@; and Libby showed that the turbulent 

compressible viscosity coefficient Q can be related to its 
incompressible value. Employing the Mager transforma- 
tion [a and assuming that the moment about the axis of 
turbulent shear stress over an i~~t~irn~ mass is 
preserved, the authors derived the foliowing relation for 
the case of axisymmetric jets 

r 

2PO 
;- (rp)lo Pr’dr’, 

I 
(1) 
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where PO denotes a reference density. If PO is chosen to be 
equal to pq,, then the centerline values of f and ? are 
formally the same since 

lim4 = 1 
r+ll g 

(2) 

If now ? is specified, the compressible value of E can be 
calculated provided the density profiles in the mixing 
region are known. 

A different approach is taken in [I]; there the mo- 
mentum equation is solved for l . 

r 

E= [I 2 (pu2) r' dr’ + p uvr 
au -1 I[ 1 pr z (3) 

0 

Equation (3) is considerably simplified as r approaches 
zero. Then c reduces to 

lim E E = E = Rio (4) 

Values of E and C/E% may now be evaluated from equa- 
tions (3) and (4) provided the density and velocity profiles 
and their derivatives with respect to the streamwise and 
radial co-ordinate can be determined. If this information 
is available, results of equations (3) and (4) may serve to 
prove the validity of equation (1). 

The experimental determination of derivatives is 
usually very difficult. It is, therefore, desirable to corre- 
late the measurements first through suitable expressions 
which then allow determination of the derivatives 
analytically. Several expressions have been suggested for 
the representation of the radial profiles for jet flows. In 
the present analysis Forstall’s and Shapiro’s cosine profile 
[7] will be used. It relates the concentration of the injected 
gas and the velocity difference to the ratio of the radial 
co-ordinate r and the half boundary rt as follows: 

Y2 
- = z: = 4 [l + cos (;$I 

Y2% 
(5) 

Though the asymptotic behavior is not described 
accurately by equation (5), it correlates the experimental 
data with good accuracy and provides a convenient 
means for evaluating the velocity and concentration 
derivatives. An example for a correlation of hydrogen 
concentration profiles of [l] is given in Fig. 1. In addition, 
the spreading of the jet (i.e. the half boundary rt), and the 
centerline values of concentration and velocity must be 
specified. The results of [l] indicate that these quantities 
may be approximated by equations of the form 

and 

Yze = UlX_“l ra = blxml (6) 

UC - UC _- = &X-% ri = bzxmt, (7) 
Ue - ug 
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FIG. 1. Correlation of normalized mass concentration 
profiles fov hydrogen air mixing in a compressible 

turbulent jet flow. 

where al, a2, 61, bz, ml, mt, nl, and nz are experimental 
constants. 

The density derivatives in equation (3) are obtained by 
differentiating the equation of state 

(8) 

The derivative of the molecular weight is readily available 
since it depends on the mass fraction of the injected gas 
only and can thus be evaluated by means of equations (5) 
and (6). The only unknown quantities in equation (8) are 
the temperature Tand its derivative @T/ax). If the stagna- 
tion temperature is measured, both can be computed 
from the stagnation enthalpy in the mixing region. Then 

i=3 i=3 

T = (2 yi [C&Ts - Tr)l - $1 [x y*cd] -’ + Tr 

d=l i=l 

(9) 

In equation (9) T is linearly related to the enthalpy and 
is referred to a suitable chosen reference temperature T,. 
When the Let, Prt, and the Set numbers are assumed to be 
equal to unity, the Crocco integral can be employed to 
determine the temperature: 

T = We(u - uj) + H&e - u)](ue - uj)-’ - &I?- 
i=3 i=3 

- x rib } [C YtC,$’ + Tr (10) 
i=l i=l 

Now B and E/CC may be found by numerical integration 
of equations (1) and (3), where the transverse velocity 
component v in equation (3) is evaluated from integration 
of the continuity equation 

lr % 
v = - pr J G (pu)r’ dr’ (11) 

0 

RESULTS 
As mentioned in the previous section, several experi- 

mental constants are needed in order to determine E/E% 
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and &(p+. These constants are taken from Ii] and, 
therefore, the present calculation is carried out for the 

accurate and the curves approach infinity at r/r+ = 2. 
Clearly, the limiting value (r-+ 03) should at least be 

test conditions stated therein. The constants nr and ml in finite if not zero. ‘This discrepancy is explained by the 
equation (6) were found to be nr = 2, and mr = 06.5. incorrect asymptotic behavior of the velocity and con- 
Since the Prt, Set, and Let numbers were close to unity centration profiles as given by equation (5). 
for several test series, the Crocco integral is used here. In Fig. 3 the radial variation of p./(p& is presented. 
Then momentum and mass diffusion become identical 
so that the spreading rates are the same; hence na = nr 

It is seen that the radial dependence of pe on r/r+ is not 

and nrz = ml. The constants a and b do not have to be 
specified since they cancel out, when c is referred to its 
centerline value. 

The test conditions of [l] are as follows. Two jets are 
arranged coaxially and an injection gas is discharged 
through a subsonic or supersonic nozzle at the center into 
an airstream moving at a constant supersonic speed. Tbe 
Mach number of the airstream is I@, = 1.6. the stagna- 
tion temperature Ts6 and Ts5 are 288°K: The static 
pressure in the mixing region is 1 atm. Three different 
injection gases, hydrogen, helium and argon, are used in 
the Various test series. 

00 
u,&=o.LI 
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*r 

For the present calculation only hydrogen is con- 
sidered, since it provides the largest density variation in 
the mixing region and should, therefore, have a larger 
effect then helium and argon on the radial variation of 
e and pc. The initial velocity ratios are chosen as 
uj/us = O-1, 0.5, 0.9, 2.0 and 4.0 and the radial profiles 
of E/E% and PE/(&, are calculated for three differ- 
ent x-stations: one, relatively close to the jet, where 
x/x0 = 15, the second somewhat further downstream 
(x/x0 = 5.0). and the third where x/x0 = 100. Here xo 
denotes the length of the potential core, is. the distance 
from the jet discharge to the point where the centerline 
values of con~tration and velocity start to change. 

The results obtained from equation fl), (3) and (4) are 
shown in Figs. 2 through 4. In Fig. 2 the radial profiles of 

FIG. 2. Radial variation of the nondimensionalized eddy 
viscosity coefficient c/cc in a hydrogen air mixture. 

Fro. 3. Radial variation of the nondimensionalized 
turbulent viscosity coefficient p&& in a hydrogen 

air mixture. 

as pronounced as that of &. Up to values of r/r+ = 1.2, 
the agreement with [5] is again quite satisfactory and 
within 10 per cent. 

The dependence of fe on the ratio of the initial 
velocities u&zc is shown in Fig. 4, where the vaIues of 
,&i(& at the half boundary are plotted versus uj/us. It 
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FIG. 4. The nondimcnsionalized turbulent viscosity co- 
efficient p&p& at the half boundary as a function of 

the vefocity ratio ttj,L Hydrogen injection. 

e/cE are plotted vs r/r+ for the velocity ratio ufjue = 0.5. is interesting to note that p is almost independent of 

The largest value of e/se is found at the centerline and u~/u~ for the entire range of velocity ratios investigated. 

with increasing r, c/erz deviates from one quite markedly. 
In the range 0 I r/r+ ~2 1.2 the results of the present CONCLUSIONS 

analysis agree quite favorably with those of [5]. For The radial variation of the turbulent kinematic and 
larger values of r/r+ the present analysis becomes less dynamic viscosity coefficients in the mixing region of two 
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coaxial heterogeneous compressible jets was investigated. 
Based on experimental results of [1], radial profiles for E 
and PE were obtained for various initial velocity ratios of 
the two streams. 

It was found that the kinematic viscosity coefficient c 
varies appreciably in the radial direction, whereas the 
dynamic coefficient pc does not exhibit such a strong 
radial dependence. This result confirms that the assump- 
tion of PE remaining constant in the radial direction and 
varying in the streamwise direction as discussed in [2, 3, 
and 41 is a reasonable approximation to its actual 
behavior. It was also shown that the viscosity coefficients 
E and pc do not strongly depend on the initial velocity 
ratio of the two streams. 

The results of the present analysis were compared with 
those obtained from the transformation for the com- 
pressible kinematic viscosity coefficient of [5]. It is 
indicated that the agreement is quite satisfactory. There- 
fore, it can be concluded that this transformation de- 
scribes the radial variation of l with good accuracy, 
provided < is specified correctly. 
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